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ABSTRACT: Errors associated with the location of precipitation in QPFs present challenges when used for hydrologic
prediction, particularly in small watersheds. This work builds on a past study that systematically shifted QPFs prior to in-
putting them into a hydrologic model to generate streamflow ensembles. In the original study, which used static, predeter-
mined shifting distances, flood detection improved, but false alarms increased due to large ensemble spread. The present
research tests a more informed approach by randomly selecting shift directions and distances based on the distribution of
displacement errors from a sample of QPFs. Precipitation forecasts were taken from the High-Resolution Rapid Refresh
Ensemble (HRRRE), and streamflow predictions were generated using the Weather Research and Forecasting hydrologi-
cal modeling system, version 5.1.1, in a National Water Model 2.0 configuration. A 63-member streamflow ensemble was
generated using the 9 original HRRRE and 54 shifted HRRRE members. Two ensemble updating schemes were tested in
which ensemble member weights were adjusted using precipitation location and QPF displacement present at convective
initiation. The ensembles using QPF shifted based on climatological spatial errors showed higher probabilistic forecasting
skill, while having comparable dichotomous forecasting skill to the original HRRRE ensemble. Other methods of selecting
nine ensemble members from the full 63-member suite did not show significant improvement. Flood peak timing showed
frequent errors, with average timing errors around five hours early. Larger watersheds tended to have better skill metric
scores than smaller basins, with increased skill added by the shifting of QPF.
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1. Introduction

Since 1980, there have been 35 separate billion-dollar flood
disasters in the United States, with a total cost exceeding
$159 billion. Additionally, flooding during that time accounted
for 624 fatalities (Smith 2020). In much of the central United
States, a majority of the annual precipitation falls during the
warm months of the year from May to September (Shaw and
Waite 1964). The warm season convective rainfall in this re-
gion is dominated by large mesoscale convective systems
(MCSs) that pose a number of different hazards, including se-
vere wind, hail, tornadoes, and intense localized precipitation
(Fritsch et al. 1986; Gallus 2012; Haberlie and Ashley 2019).
MCSs account for over 50% of annual rainfall in the Midwest
and eastern United States (Haberlie and Ashley 2019). Future
climate projections have indicated a risk of more intense and
frequent convective precipitation events (Hejazi and Markus
2009; Andresen et al. 2012). Given their regularity and inten-
sity, the ability to accurately predict these events and model
their hydrologic impacts is extremely important.

Errors in QPFs have been found to be the highest during
the warm season when intense rainfall and flooding is most
common (Gallus 2012; Sukovich et al. 2014). Errors in the
predicted rainfall intensity, orientation, size, shape, timing,

and location can propagate and interact with errors in the hy-
drologic model (Brown and Heuvelink 2006; Collier 2007),
impacting the accuracy of streamflow predictions, especially
for flash flooding (Rezacova et al. 2007; Hapuarachchi et al.
2011). Furthermore, uncertainty in the streamflow forecasts
tends to grow with longer lead times (Seo et al. 2018; Lin et al.
2005). Past research has found that streamflow forecasts for
small watersheds had significant increases in error beyond a
forecast window of 6 h (Seo et al. 2018; Adams and Dymond
2019).

Gallus (2010) examined QPF skill of a 5-member, convection-
allowing ensemble using object-oriented verification approaches
and found there was less than a 10% error in forecasted
rain rate, but the average spatial displacement was between
100 and 250 km, depending on the approach used. Over half
of the systems studied had no overlap between the obser-
vations and the simulated precipitation objects, with spatial
displacement errors having large standard deviations. The
standard deviations ranged between 100 and 200 km, depend-
ing on which method was used to identify rainfall objects
(Gallus 2010). A recent study of a 2018 flood event showed
that QPF intensities from the High-Resolution Rapid Refresh
(HRRR) model were accurately depicting the risk of flooding
in the mesoscale study domain, while errors in the spatial
displacement of precipitation were common at finer scales
(Viterbo et al. 2020). Specifically, the average precipitation
over a large area was correct, but localized areas of wet
biases next to dry biases showed the impact of spatial dis-
placement errors.

Carlberg et al. (2020) tested an ensemble streamflow pre-
diction method that accounted for uncertainty due to spatial
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displacement errors by shifting ensemble member QPF prior
to input into a hydrologic prediction model. They used High-
Resolution Rapid Refresh Ensemble (HRRRE) QPF as
forcing and shifted each of the 9 original HRRRE members
in both the cardinal and ordinal directions, resulting in an
81-member ensemble when including the original HRRRE
members. Shift distances of 55.5 and 111 km and 0.58 and
1.08 latitude/longitude, respectively, were tested. The probabil-
ity of detection for flooding was improved in the shifted ensem-
ble compared to the original 9-member ensemble. However,
despite the shifting, often only a small subset of the ensemble
members produced rainfall over the basin, leading to low prob-
abilities associated with flooding.

Kiel et al. (2022) quantified and compared the spatial dis-
placement errors in the High-Resolution Ensemble Forecast,
version 2, (HREF) and the HRRRE at the hour of convective
initiation (CI) and for the 0–18-h forecast period when most
of the precipitation occurred in the systems. The displacement
analysis was based on the centroids of the precipitation area
and conducted for 30 cases over the 2018 warm season. Dis-
placement errors were generally larger and had higher spread
at CI than for the 0–18-h accumulation period. Location er-
rors in the HRRRE had smaller spread and a westward bias
that appeared to follow a skewed-normal spatial distribution,
while HREF had larger spread and no apparent displacement
directional bias (Kiel et al. 2022). In addition, Kiel et al.
(2022) found that there was a slight correlation between the
displacement of the forecasted precipitation centroid at CI
and the centroid of the 0–18-h accumulation period. They sug-
gest that it may be possible to improve QPF forecasts using
the displacement error present at the onset of rainfall. Sup-
porting the idea that climatological information about typical
displacement errors can be helpful in adjusting forecasts,
Carlberg et al. (2020) found that the ranked probability score
of the ensembles improved when applying a simple weighting
scheme to account for the trend of westward bias in the
HRRRE precipitation.

In the present study, we test an ensemble shifting method
similar to the approach of Carlberg et al. (2020), but one that
is informed by the findings of Kiel et al. (2022). The HRRRE
QPF fields were shifted using a randomly sampled direction
and distance selected from the climatology of displacements
identified by Kiel et al. (2022). The shifted QPF along with the
original QPF were input into the Weather Research and Fore-
casting hydrological modeling system (WRF-Hydro), version
5.1.1, in the National Water Model, version 2.0, (NWM) con-
figuration (Gochis et al. 2020) to generate ensemble stream-
flow predictions for 50 stream gauges over 29 events from the
2018 warm season. The forecast region covers the same area
of the north-central United States that was used in related
forecasting studies (Carlberg et al. 2020; Goenner et al. 2020;
Kiel et al. 2022). Following Kiel et al. (2022), weighting
schemes were tested to adjust the streamflow ensembles based
on the displacement errors present in rainfall centroids at CI,
a method that could be used to adjust ensembles in real-time
forecasting. Both dichotomous and probabilistic forecasts of
peak streamflow from the ensembles were verified. While the
present study represents a scenario in which the displacement

of the QPF members is perfectly known, it demonstrates the
extent to which shifting QPF in ensembles could enhance en-
semble streamflow prediction.

2. Data and methods

a. Models and datasets

The QPFs used in this study were from the 9-member
HRRRE (Dowell et al. 2018; Dowell 2020), the same QPFs
used in Carlberg et al. (2020) and Kiel et al. (2022). The
experimental HRRRE forecasts were obtained from the
NOAA Global Systems Laboratory using their FTP server.
At the time data were compiled for this study, the HRRRE’s
domain covered the eastern two-thirds of the contiguous
United States (CONUS), with the model core HRRR, version
3 (HRRRv3; Dowell et al. 2018). Lateral boundary conditions
(LBCs) for the HRRRE are provided by the Rapid Refresh
model, and data assimilation is accomplished using the
NOAA Gridpoint Statistical Interpolation analysis system
(Benjamin et al. 2016). Initial condition (IC) and LBC pertur-
bations are added to the pressure, temperature, wind vectors
U and V, and water vapor mixing ratio to create ensemble
members. The Smirnova/Rapid Update Cycle land surface
scheme was used with the MYNN planetary boundary layer
scheme and the Thompson microphysics scheme (Smirnova
et al. 2016; Nakanishi and Niino 2009; Thompson and
Eidhammer 2014).

Data fields from the North American Land Data Assimila-
tion System, version 2 (NLDAS-2; Xia et al. 2012a,b) were
used as input to the WRF-Hydro when it was not in forecast
mode (i.e., for model spin up). NLDAS-2’s domain covers the
CONUS at 0.1258 spacing. Observed data from the National
Centers for Environmental Prediction stage II Doppler radar
precipitation estimates and the Climate Prediction Center
unified gauge-based precipitation data are disaggregated to
the hourly time scale and assimilated onto the grid of
NLDAS-2 (Xia et al. 2012a). Preprocessing tools were used to
regrid NLDAS-2 data to the parent grid of the hydrologic
model. NLDAS-2 data from October 2013 to April 2018 were
used to create a 4-yr spinup for the hydrologic model.
NLDAS-2 was also used to create warm starts for each
HRRRE storm event.

The hydrologic model used was the WRF-Hydro within the
NWM (Gochis et al. 2020). A subset of the NWM for the
study region (Fig. 1) and with all the necessary configurations
and parameterizations was obtained from the National Center
for Atmospheric Research (NCAR). Catchments and river
vectoring in the NWM are derived from National Hydro-
graphy Dataset Plus (NHDPlus), version 2, data (Gochis et al.
2020). The NWM uses the Noah multiparameterization
(NoahMP; Niu et al. 2011) LSM, run on a 1-km horizontal
grid with a 2-m soil depth split into four layers and operated
on an hourly time step. Land-cover parameters used in the
NoahMP were classified using the United States Geological
Survey (USGS) 24-type land use–land cover product and
the MODIS modified IGBP 20-category land-cover product,
and soil classifications and soil hydraulic parameters are
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based on the 1-km State Soil Geographic (STATSGO)
Database (Gochis et al. 2020). Within the NoahMP, vegeta-
tion dynamics are calculated using climatological lookup tables.
Canopy stomatal resistance is derived through the Ball–Berry
conductance model (Ball et al. 1987), while the soil moisture
factor for stomatal resistance comes from the Noah model.
Radiative transfer in the vegetive layer is based on two-
stream approximation applied to the vegetated fraction. The
temperatures at the bottom of the four soil layers are taken
from climatology (Niu et al. 2011; Gochis et al. 2020).

Surface runoff in the NWM setup was routed using the
steepest descent option run on a 250-m nested grid at 10-s
time steps. Groundwater was modeled using the built-in expo-
nential bucket model. Water exiting the groundwater bucket
is routed directly to the stream network. Last, Muskingum–

Cunge reach-based routing was used to convey water down-
stream after it entered the channel; the reach-based routing
runs at a 300-s time step, and discharge is output at hourly
time steps for specified stream locations. The HRRR regrid-
ding package, provided by NCAR, was used to isolate the
study domain from the much larger HRRRE domain and
scale the 3-km HRRRE forecasts to the 1-km grid of the LSM
used within the WRF-Hydro. Each ensemble member was
run through the WRF-Hydro for the full 36-h HRRRE fore-
cast period, followed by an additional 48 h of spindown period
comprised of NLDAS-2 forcing with the precipitation field ze-
roed out.

Streamflow observations were acquired from the USGS
database (USGS 2016). The data were available at 15-min
intervals and was averaged to 1 h. Time periods with missing
data were ignored and not used in the verification to elimi-
nate the possibility of influencing results with interpolated
time steps.

b. Site and case selection

The WRF-Hydro was initiated using a 4-yr spinup period and
then run from 1 May to 1 November 2018. Model performance

during the latter simulation was used to determine which basins
to include in this study. This period was chosen due to the
occurrence of a wet summer in the study region, leading to sev-
eral high-flow events for evaluation. Of the original 149 gauge
locations contained within the modeled domain, 50 gauges (see
Table S1.1 in the online supplemental material) were classified
as having acceptable performance based on a Nash–Sutcliffe
efficiency greater than 0.4 and percent bias under 40%. We
chose a slightly lower threshold for satisfactory model perfor-
mance than what has been reported in other studies (Moriasi
et al. 2007; Madsen et al. 2020) to allow for a larger forecast
sample. The selected cases were identified when a flash flood
warning, or watch, was issued by the National Weather Service
(NWS), or if flooding was observed regardless of a prior advi-
sory issuance (see Table S1.2).

c. Shifting QPF

Kiel et al. (2022) calculated the spatial displacements of
predicted precipitation in the HRRRE forecasts by compar-
ing the centroid locations of the precipitation systems in the
QPFs to the centroid locations of precipitation systems in the
Multisensor Precipitation Estimator (Seo and Breidenbach
2002). Displacements were calculated for the 0–18-h accumu-
lation period and at the hour of CI. The 30 cases used in the
Kiel et al. (2022) study were from May to September 2018
and are the same as those used here. It is acknowledged that
Kiel et al. (2022) represents a limited period of record, and by
using the same forecasts, we are effectively testing our shifting
technique with a near-perfect climatology of the forecast sys-
tem errors. As such, this work represents an ideal scenario.

A skewed-normal random number generator (snRNG) was
used to select locations for random shifts of QPF within our
model grid that fit the distribution of the HRRRE displace-
ments found in Kiel et al. (2022). Latitude and longitude were
sampled separately when running the snRNG because, al-
though they shared similarities in spread, their skew values
had differing signs and the paired distributions had almost no
correlation.

The method presented in Carlberg et al. (2020) resulted in
an 81-member ensemble and thus required 81 separate hydro-
logic model runs. An ensemble of that size may be impractical
in operations; therefore, we first determined the number of
shifts (samples) that would be needed to reproduce the distri-
bution of the HRRRE displacement errors with the goal of
reducing the number of model forecasts per ensemble to the ex-
tent deemed reasonable. Distributions of latitude and longitude
displacements were created by sampling the Kiel et al. (2022)
0–18-h accumulation displacements for each HRRRE member
using the snRNG. The smallest ensemble tested had three shifts
per parent HRRRE member, creating a 36-member ensemble
(27 shifted members and 9 nonshifted members), while the
largest ensemble tested had eight shifts per member, creat-
ing an 81-member ensemble. The snRNG was run 100 times
for each sampling regime: 36, 45, 54, 63, 72, and 81 mem-
bers. For each of the six sampling regimes, the mean absolute
deviation (MAD) was calculated for the mean, standard devia-
tion, and skew to evaluate how well the sampled ensemble

FIG. 1. NWM domain obtained from NCAR (bolded rectangle).
Gauges are indicated by black dots with major watersheds shown
in colored polygons.
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distribution matched the observed distribution. As the number
of shifts in the sampling regime increased, the error between
the ensemble distribution and the observed distribution de-
creased. However, we estimated that the amount of time to
preprocess the QPF and run the ensemble for each event
would increase by about 25% for every increase of 9 shifted
members in the sampling regime. To minimize run time
while maintaining a reasonable representation of displace-
ment errors in the ensemble, the 63-member ensemble
(Ens63) was chosen. It was comprised of 54 shifted members
plus the 9 original nonshifted HRRRE members. The origi-
nal HRRRE containing only the 9 nonshifted members (En-
s9Orig) was used as a point of comparison.

During the regridding process for the HRRRE QPF, data
were mapped to the NWM domain, as well as a larger
“shifting” domain that fully encompassed the NWM domain
but with considerable buffer on every side (Fig. 2). The larger
domain was needed to provide a source of QPF for the shifted
QPF forcing, while the smaller NWM domain provided a spa-
tial template for data to be shifted into. In the case of a north-
west shift (Figs. 2b,c), data matching the grid dimensions of
the NWM domain would be taken from the shifting domain
and passed to the center of the NWM domain. This acted to
shift southeastward the precipitation that was originally to the
northwest into the study domain. During rain events, short-
term streamflow processes are primarily determined by the
precipitation flux. Therefore, only the QPF was shifted and
other forecasted input fields (e.g., wind, radiation) that would
have a significantly smaller impact on results remained
unshifted.

d. Ensemble weighting

The primary weighting scheme for streamflow ensembles
uses equal weighting of all members (EqWt). Additional
weighting schemes were investigated making use of spatial
displacements present at CI. Kiel et al. (2022) hypothesized
that displaced rainfall at CI could offer insight into the likely

displacement of the 0–18-h accumulation associated with a
rainfall system. If this relationship were true, the displacement
observed at the beginning of a storm’s life cycle could be used
to update the ensemble, weighting those shifts that were more
likely to result in the smallest spatial error of the total rainfall
from the system during its lifetime. To test this hypothesis,
two additional ensemble weighting schemes were evaluated.
In the first of these schemes, weights were assigned to model
members as a function of the inverse of the distance between
the centroid of the displaced precipitation at CI and the cen-
troid of the shifted QPF for the rainfall during the lifetime of
the system (DistWt). The last weighting scheme leveraged the
observation that spatial displacement errors at CI were larger
than those for the accumulated 0–18-h QPFs (Kiel et al.
2022). Kiel et al. (2022) showed that the best improvement in
the 0–18-h QPF location errors was obtained by adjusting the
CI displacement as a function of the directional quadrant in
which the CI displacement occurred (i.e., northwest, northeast,
southeast, southwest). Thus, the final weighting scheme used
the same inverse distance weighting technique as DistWt; how-
ever, this approach applied the quadrant-based correction to
adjust the centroid of the precipitation system at CI before
finding the inverse of the distance (CorrDistWt). Weights for
DistWt and CorrDistWt were normalized so the sum of all
weights equaled 100%.

The weighting system produced an infinite weight if the dis-
tance between centroids was 0 km. In those cases, the zero
distance was replaced with an arbitrary value of 0.5 km. The
value of 0.5 km avoids the undefined division by 0, while still
assigning the most accurate member(s) the highest possible
weight. Because the weights go through a process of normali-
zation where each distance between centroids is divided by
the sum of the distances among all ensemble members, the re-
sults are not sensitive to this change.

The concepts for weighting schemes DistWt and CorrDistWt
were also applied to create an additional ensemble for
comparison. This ensemble was comprised of a small 9-member

FIG. 2. A visual example of the methodology for shifting QPFs within the WRF-Hydro framework. (a) The solid blue square shows the
shifting domain. The black dashed square is the NWM domain. The black cross is the center point of the NWM domain. (b) The green
dashed oval represents the climatological displacement distributions found by Kiel et al. (2022). The snRNG picks 54 latitude and longi-
tude points from inside the area of the dashed oval. Those latitude and longitude points then become the centers of a shifted domain (red
cross). (c) Data that match the dimensions of the NWM domain, centered at the red cross, are then moved to the center of the
NWM domain (black cross).
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subset of members selected based on the location of their
shifted centroids. To do this, the ensemble members from
Ens63 were grouped by their parent HRRRE model mem-
ber. Then, one member was selected from each parent
model group that had the shortest distance between the cen-
troid of its QPF for the rainfall during the lifetime of the
system and the centroid of the displaced precipitation at CI
(this method is referred to as Ens9Sel). Ens9Sel was meant
to keep the variability of each of the perturbation-driven
members of Ens9Orig while isolating members that per-
formed best in their depiction of precipitation location at CI.
After the selection process is complete, each member within
Ens9Sel is given equal weight. A fourth ensemble using a simi-
lar method of member selection was tested where the process
was repeated without members being grouped by parent
model member. After evaluation, it was determined that per-
formance of the fourth ensemble and the Ens9Sel were similar
enough that inclusion of both methods in the results was not
warranted.

Ens9Sel is only available for comparison when DistWt and
CorrDistWt are used because of its dependence on the CI dis-
placement errors for the selection of members. Ens9Orig and
Ens63 are compatible with all three weighting approaches.
In all, three ensembles using three weighting/selection ap-
proaches were tested (Table 1).

e. Forecast verification

We use a suite of common dichotomous and probabilistic
forecast verification metrics to evaluate the performance
of the ensembles for predicting peak discharge and timing.
Figure S1.3 shows an example of an ensemble streamflow
forecast with flood categories depicted. Ranked histograms
(Anderson 1997; Hamill and Colucci 1997; Talagrand et al.
1997) are used to measure how well an ensemble’s spread of
the forecast represents the true variability of the observations.
In this work, the ensemble members are first sorted by the

magnitude of peak discharge. The observed peak discharge is
compared to the output of the sorted ensemble members, and
the position of the observation relative to the ensemble mem-
bers is determined. That process was repeated for all gauges
and cases. The observed frequency of where the observations
fell relative to the ensemble peak discharge is plotted using
histograms along with a horizontal line representing the uni-
form distribution of observations. If the histogram forms a
“U” shape relative to the horizontal line, the ensemble is con-
sidered to be underdispersive. If the histogram forms a bell
shape toward the central members, it is considered to be over-
dispersive. Ideal ensemble performance is shown if/when each
column within the histogram matches the horizontal line. The
goal of the ranked histogram is to diagnose ensemble consis-
tency. In a consistent ensemble, an observation should be
equally likely to fall into any of the ranks within the range pro-
vided by the ensemble members (Wilks 2011). Because ranked
histograms consider discharge, not probability, they will not be
impacted by member weighting. Therefore, the ranked histo-
grams only apply to Ens9Orig, Ens63, Ens9Sel-DistWt, and
Ens9Sel-CorrDistWt.

The ranked probability score (RPS) for any individual fore-
cast is the sum of the squared differences of the cumulative
distributions of the forecast Ym and the observed events Om

(Wilks 1995; Franz et al. 2003):

RPS 5 ∑
J

m5i
(Ym 2 Om)2: (1)

The cumulative distribution of the forecast is

Ym 5 ∑
m

j51
yj, m 5 1, …, J, (2)

where yj is the relative probability of the forecast, and J is the
number of forecast categories (Wilks 1995). The cumulative
distribution of the observed streamflowOm is

TABLE 1. Ensembles tested in this study.

Abbreviation Ensemble Weighting/selection scheme

Ens9Orig Original HRRRE Equal weighting of all members
Ens9Orig-DistWt Original HRRRE Inverse distance weighting based on observed QPF

displacements at CI
Ens9Orig-CorrDistWt Original HRRRE Kiel et al. (2022) correction applied to the inverse distance

weighting based on observed QPF displacements at CI
Ens63 Original HRRRE with 54 randomly

shifted members
Equal weighting of all members

Ens63-DistWt Original HRRRE with 54 randomly
shifted members

Inverse distance weighting based on observed QPF
displacements at CI

Ens63-CorrDistWt Original HRRRE with 54 randomly
shifted members

Kiel et al. (2022) correction applied to the inverse distance
weighting based on observed QPF displacements at CI

Ens9Sel-DistWt Members of Ens63 with lowest displacement
error grouped by HRRRE member

Members selected based on the distance between
(non)shifted member QPF and observed displacement of
QPF at CI

Ens9Sel-CorrDistWt Members of Ens63 with lowest displacement
error grouped by HRRRE member

Members selected based on the distance between centroid
(non)shifted member QPF and centroid of observed
QPF displacement at CI with the Kiel et al. (2022)
correction factored in
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Om 5 ∑
m

j51
oj , m 5 1, …, J, (3)

where the category in which the observed discharge peak oj
occurs is given a value of 1, and all categories greater than oj
also receive a value of 1, with categories less than oj assigned
a 0. Smaller scores mean that there is less difference between
the forecast probability and the observed probability. The
RPS of the magnitude of peak discharge (RPSQ) was calcu-
lated using the following flood categories: less than 50% of ac-
tion stage, 50% of action stage to action stage, action stage to
minor flood stage, minor flood stage to moderate flood stage,
moderate flood stage to major flood stage, and greater than
major flood stage. [The thresholds defining flood categories
for each gauge were obtained from https://water.weather.gov/
ahps/ (NOAA 2020) and were converted to units of discharge
using the rating curves available at waterwatch.usgs.gov.] For
the purposes of this study, we defined the additional threshold
of 50% action stage to separate predictions of very low flow
from those of moderately high flow. Because major stage was
not defined for some gauges, RPSQ could only be calculated
at 37 of the 50 gauges. The RPSQ was calculated for flood cat-
egories, rather than continuous discharge, because the flood
categories are relevant in the context of applying forecast in-
formation for emergency management and response.

A 2 3 2 contingency table, similar to the setup of Carlberg
et al. (2020), was employed to evaluate the forecast skill for
prediction of flood or no flood, where “flood” is defined as
greater than or equal to minor flood stage. Contingency tables
are commonly used to evaluate forecast skill in meteoro-
logical forecasting and allow for the evaluation of a simple
forecast of a single categorical outcome, given a singular
predictand without the consideration of uncertainty (Wilks
1995). Of the 50 gauges that met our standards for Nash–
Sutcliffe efficiency and percent bias, only 43 had a defined
minor stage. If flooding was observed, and the model pre-
dicted flooding, the result is a hit H. Otherwise, if flooding
was not predicted by the model and flooding was observed,
it is assigned a miss M. Similarly, when flooding was not
observed and the model predicted flooding, it is assigned a
false alarm (FA). Although each case was selected based
on flooding occurring in the region, flood-producing rain-
fall amounts at each basin did not always occur. If flooding
was not observed and the model had not predicted flood-
ing, it is considered a correct negative (CN).

There are several forecast metrics that can be calculated us-
ing the information in the 2 3 2 contingency table: probability
of detection (POD), the ratio of the number of hits to the to-
tal number of events observed,

POD 5
H

H 1 M
; (4)

false-alarm ratio (FAR), the ratio of the number of false
alarms to the total number of events forecasted to occur,

FAR 5
FA

FA 1 H
; (5)

and equitable threat score (ETS; also called Gilbert skill score),
the ratio of hits to hits, misses, and false alarms, with an addi-
tion of an estimation for chance to correct for the number of
hits that may have occurred due to a chance forecast,

ETS 5
H 2 chance

H 1 FA 1 M 2 chance
; (6)

where chance is calculated as the events forecasted multiplied
by the events observed divided by the total number of fore-
casts N,

chance 5
(H 1 FA) 3 (H 1 M)

N
: (7)

Probability of exceedance (POE) thresholds of .0%, $10%,
$20%, $30%, $40%, $50%, $60%, $70%, $80%, and
$90% were used to form 10 contingency tables to assess en-
semble forecasting at differing levels of ensemble certainty.
POE is the percentage of model members that had forecasted
peak streamflow at or above minor flood stage. It should be
noted that because Ens9Orig only contains nine members, the
lowest possible POE is already greater than 10% (1/9 ; 11%)
for EqWt, as well as Ens9Sel-DistWt and Ens9Sel-CorrDistWt.
Although the equally weighted 9-member ensembles would not
have a probability less than 10%, 10 levels of probability were
used to be consistent with other studies.

In addition to the probabilistic measures mentioned previ-
ously, reliability was calculated using forecast probability inter-
vals of 0%–5%, 5%–15%, 15%–25%, 25%–35%, 35%–45%,
45%–55%, 55%–65%, 65%–75%, 75%–85%, 85%–95%, and
95%–100%. Reliability is displayed as a diagram that represents
the conditional distribution of observed events given the forecast
of an event (Wilks 1995); in this case, the event is the exceedance
of minor flood stage. Perfect reliability occurs when the data lie
along a 1:1 line; forecasts are overforecasting when they fall to
the right of the 1:1 line and under forecasting when they fall to
the left of the 1:1 line. To create a summary measure for reliabil-
ity, MAD provides a way to quantify error as compared to the
1:1 perfect line. MAD for reliability (MADRel) is defined here as

MADRel 5

∑
N

i51
|(Fi 2 Pi)|

N
, (8)

where Fi is the relative frequency of occurrence of observed
events given a forecasted probability within intervals (i…N),
and Pi is the relative frequency of occurrence of a perfect
forecast (thus equal to the forecast probability). Table 2
shows all the abbreviations of the verification metrics as well
as their perfect score.

Flood peak timing was analyzed to see if the QPF shifting
would lead to any noticeable changes in the temporal aspect
of forecast skill. This was done using RPS for the timing of
peak discharge (RPST), where the categories used to evaluate
RPST were calculated by splitting forecasted peaks into 2-h
bins in a near-continuous calculation. Action stage was the
minimum threshold used to define a flood peak, and any
member that did not produce output above action stage was
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regarded as a miss in the timing analysis, and thus, the proba-
bility for those members were removed from the total pool
used to form the cumulative probability. This made it so an
ensemble forecast with a considerable number of misses
would produce a worse RPST overall. Misses also occurred
when ensemble members’ peaks occurred at the beginning or
end of the period because the full scope of the flood wave
could not be captured. In addition to RPST, the error between
the timing of peak discharge of the ensemble members and
observed peak streamflow was calculated. This was done to
look at general trends across the different ensembles because
weighting approaches could not be factored in.

The goal of this study was to characterize the general per-
formance of the shifting methods; therefore, results were ag-
gregated across all basins and events. While it may be of
interest to know how the methods perform for a given water-
shed, subregion, or storm, such analysis is hindered by a small
number of events for any given watershed. Additionally, fore-
cast skill was analyzed based on watershed size, with the me-
dian size of basins in our study (;4000 km2) serving as the
threshold between large and small watersheds. Paired two-
tailed t tests were used to judge the statistical significance of
the results for all metrics. A 90% confidence interval was
used as the threshold for assessing significance.

3. Results and discussion

a. Probabilistic measures

Ranked histograms show that all the ensembles are under-
dispersive (Fig. 3), with the observations frequently falling
out or at the extreme ends of the ensembles. There is a ten-
dency for the majority of observations to fall below the lowest
value from the Ens63 ensemble, while there is a slightly
higher tendency for observations to fall above the highest
value of the ensemble for the other three ensembles. The
problem of underdispersion improves slightly for Ens9Sel-
DistWt and Ens9Sel-CorrDistWt as indicated by the higher

FIG. 3. Ranked histograms for all ensembles (a) Ens9Orig, (b) Ens63, (c) Ens9Sel-DistWt, and (d) Ens9Sel-
CorrDistWt. Average case count has been plotted as a horizontal black line to help represent “perfect” reliability.

TABLE 2. List of abbreviations of verification metrics and their
perfect score.

Metric Abbreviation
Perfect
score

RPSQ Ranked probability score for the magnitude
of peak discharge

0

POD Probability of detection 1
FAR False-alarm ratio 0
ETS Equitable threat score 1
MADRel Mean absolute deviation of reliability 0
RPST Ranked probability score for the timing of

peak discharge
0
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frequency of observations across the middle bins. Moreover,
the output of the Ens9Sel-CorrDistWt has slightly better
dispersion than the Ens9Sel-DistWt, with the distribution
slightly more even across the ranks. In addition to underdis-
persion, there is a negative bias in all the ensembles, where
the observations more heavily favor the higher ranks.

Some of the issues revealed by the ranked histogram can be
attributed to the hydrologic model used. The WRF-Hydro
tended to overestimate the base flow. In cases where no event
occurred, the simulated flow was often already greater than
the observation. For these nonevents, the ensembles would be
penalized for each member that was overpredicting the base
flow (in these cases, there would be little to no rainfall forcing
to modify the streamflow response of the model). The prob-
lem is exacerbated in the large Ens63 ensemble because it has
more members, so the observation more often ends up in the
lowest bin of the ranked histogram. Because the accuracy of
the baseflow simulation will become a dominant factor in the
forecast skill for low-flow, nonflooding situations, bias of sim-
ulated discharge was calculated for forecast events where ac-
tion stage was not met. In those cases, relative bias ranged
from 24% to 28%. In contrast, the bias of simulated stream-
flow for events that surpassed action stage ranged from 25%
to 0%.

Hamill (2001) recommends subsetting forecasts to better
understand conditional behaviors of ensembles; therefore,
ranked histograms were examined for events when flooding
did and did not occur. Forecasts for nonflooding events
have a positive bias, whereas forecasts for flooding events
have a negative bias. Given that model biases were shown
to change with flow levels, the conditional biases are likely
linked to errors in the hydrologic model in addition to the
QPF. The combination of these behaviors for different
event types leads to the general pattern of underdispersion
seen in Fig. 3.

For RPSQ, Ens63 produced more accurate forecasts on
average than Ens9Orig (Fig. 4). The weighting schemes did
not improve the RPSQ scores for either Ens9Orig or Ens63.
The 9-member ensemble that used select ensemble mem-
bers based on their displacement at CI did produce a fore-
cast with lower RPSQ compared to the Ens9Orig. RPSQ for
Ens9Sel-DistWt and Ens9Sel-CorrDistWt were only slightly
worse than Ens63, suggesting that a smaller ensemble could
perform as well as the larger ensemble for prediction of
flood categories given some information about likely dis-
placements for each member.

Reliability diagrams are shown in Figs. 5a–c for all en-
sembles and all weighting approaches. The lack of data at
50% reliability for Ens9Orig, as well as Ens9Sel-DistWt
and Ens9Sel-CorrDistWt are due to only nine members
being in those ensembles. POE values are possible at 44.4%
and 55.5% but do not fall within the 45%–55% POE
category.

All ensembles overpredict at all levels except the two
lowest forecast probability categories, indicating that they
assign too much probability compared to the observed fre-
quency. Ens63 has overall better reliability than Ens9Orig.
This observation is supported by the lower MADRel (Fig. 5d),
with Ens9Orig having a value of 0.223 compared to Ens63
with 0.150. This was the only instance of statistical signifi-
cance between the MADRel values at a 90% confidence
interval.

Similar to RPSQ, the weighting schemes did not signifi-
cantly improve the verification statistics of the ensembles.
Ens9Orig-DistWt and Ens9Orig-CorrDistWt have only slightly
better MADRel compared to Ens9Orig, with the improvement
occurring in the middle to upper forecast probability range
(60%–80%). The weighting schemes reduced the reliability of
Ens63. In contrast to the RPSQ, reliability was not improved
when the ensemble was reduced to the nine members. Based

FIG. 4. Box-and-whisker plots for the RPS for RPSQ for all ensembles (Ens9Orig, Ens63,
Ens9Sel) with the three weighting schemes EqWt, DistWt, and CorrDistWt. Means are marked
by white circles contained inside the middle two quartiles.
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on MADRel, Ens9Sel-DistWt and Ens9Sel-CorrDistWt did not
perform better than the Ens9Orig with these weighting
schemes and only slightly better than the equally weighted
Ens9Orig.

The lack of perfect reliability is consistent with the issue
of underdispersion found in the ranked histograms, which
showed that the observations tend to be concentrated at the
extreme end of the ensemble range. The overforecasting seen
in the reliability diagram also indicates that the members are
not adequately distributed across the range of possible out-
comes, resulting in probabilities for a given event that are too
large on average. The overforecasting in the higher forecast
probabilities could stem from the low sample size in these
probability ranges.

To summarize the probabilistic verification, the informed
spatial shifting of QPF produced improved probabilistic fore-
casts in terms of both ranked histograms and RPSQ, where
Ens63 outperformed the 9-member ensembles (at a 90% con-
fidence level) for all weighting approaches tested. Reliability
matched this pattern, although statistical significance of the
better reliability was limited. Moreover, the selection methods
used to create Ens9Sel produced better scores than Ens9Orig,
while it also appears that there were continued benefits of the
increased ensemble size of Ens63.

b. Dichotomous measures

POD and FAR for streamflow hitting minor stage or above
decreased as POE increased for all ensembles tested (Table 3).
Because the general pattern for POD and FAR across POE
thresholds was the same for DistWt and CorrDistWt, only re-
sults for the equally weighted ensembles are shown. The largest
POD was exhibited by Ens63 at the 0% POE threshold. POD
drops below 50% at the 80% POE for Ens63 and at 90% POE
for Ens9Orig, indicating a slightly better performance for the
original HRRRE ensemble. FAR exhibited a similar pattern to
POD, with values decreasing as POE thresholds increased.
Ens63 had better scores for FAR than Ens9Orig, but the differ-
ences were significant only at the 85% confidence level.

Across the POE thresholds, Ens63 had the highest ETS
(at 60%) compared to Ens9Orig (Table 4). For POE higher
than 60%, Ens9Orig has better ETS, indicating that it pro-
duces forecasts of higher skill at higher confidence levels.
The weighting schemes improved ETS for the Ens9Orig ensem-
bles, with the highest ETS occurring for Ens9Orig-CorrDistWt
at POE of 70%. The weighting schemes improved the Ens63
for POE . 70% but had a negative or mixed impact on ETS
for lower POEs. The peak ETS value dropped from 70%
POE for the Ens63-DistWt to 50% POE for the Ens63-
CorrDistWt. That was the lowest POE threshold associated

FIG. 5. Reliability curves for forecasts above and below minor flood (colors explained in legend on right) using
(a) EqWt, (b) DistWt, and (c) CorrDistWt. A line of theoretically perfect reliability has been added (solid
black) to provide a reference. (d) The MADRel for all ensembles with all approaches.
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with a peak ETS outcome of any of the ensembles. This jump
between POE thresholds was likely related to the decrease in
false alarms. Similarly, the shift in the peak ETS from 60% for
Ens9Sel-DistWt to 70% for Ens9Sel-CorrDistWt can be tied
to an increase in false alarms and a decrease in hits at the
60% level when the CorrDistWt scheme is applied.

In contrast to the probabilistic measures, the dichotomous
measures for peak discharge indicated that Ens9Orig outper-
formed the other two ensembles and their shifted members.
Statistical significance criteria were met for ETS differences
between Ens9Orig-CorrDistWt and Ens9Sel-CorrDistWt,
where Ens9Orig-CorrDistWt had the better average. The
p values for all ensemble comparisons showed no significant
differences between any ensembles for DistWt. The highest
ETS values occurred for exceedance probabilities greater
than 50% (Table 4). Using results from Reed and MacFarlane
(2020), who used a 30% exceedance threshold to denote
“minor risk” and a 70% threshold for “high risk” for ensemble
forecasts, the ensembles tested are most accurate for making
statements of higher flood risk. However, there were only a hand-
ful of statistically significant differences at the 90% confidence
level for results across the various POE levels.

c. Timing of peak discharge

The mean timing error between the ensemble forecasts of
peak discharge and the observed was 5.15 h early, which is
consistent with Towler and McCreight (2021) who found that
many of the previous versions of the NWM simulate flood
peaks earlier than were observed. There were only minor

differences between the ensembles, with means ranging be-
tween 4.75 and 5.91 h early. The mode for all four ensembles
was identical.

Ens63 had a slightly better mean RPST than Ens9Orig
(Fig. 6), with the difference being statistically significant
(p value of 0.0802). The weighting schemes had minor impacts
on the mean RPST, and values for DistWt and CorrDistWt
were nearly identical. Ens9Sel-DistWt and Ens9Sel-CorrDistWt
had the best overall mean RPST values. Overall, the differences
between the mean RPST were within just a few hundredths
across the ensembles. The median value and range of re-
sults also did not vary greatly. These results show that,
although timing of peak discharge can be altered using
shifted QPF ensemble members, the impact is generally
small.

The outliers seen in Fig. 6 were likely a result of forecast
members falling outside the evaluation window with respect
to timing of peak, effectively missing the timing of the event
by up to 84 h. This most often happened for cases when no
precipitation was occurring in the input, and the member had
no change in streamflow and no peak discharge. The same
phenomena were observed by Carlberg et al. (2020) who
found that their methods of shifting QPFs resulted in only a
few members producing significant rainfall in the forecast ba-
sins, with many members producing little to no change in dis-
charge. The issue with producing many low-flow members
remains one of the key challenges to creating ensembles with
well-calibrated probability with the shifting methodologies.
Postprocessing techniques like those used in Seo et al. (2006)

TABLE 3. POD and FAR for each POE threshold for Ens9Orig and Ens63 using equal weighting.

.0% .10% .20% .30% .40% .50% .60% .70% .80% .90%

POD
Ens9Orig 0.816 0.816 0.76 0.709 0.682 0.62 0.592 0.553 0.514 0.486
Ens63 0.888 0.771 0.659 0.659 0.603 0.575 0.559 0.503 0.475 0.436

FAR
Ens9Orig 0.65 0.65 0.568 0.517 0.453 0.373 0.312 0.244 0.185 0.13
Ens63 0.762 0.644 0.567 0.494 0.383 0.299 0.248 0.159 0.115 0.093

TABLE 4. ETS for all ensembles (Ens9Orig, Ens63, Ens9Sel) with the three weighting schemes EqWt, DistWt, and CorrDistWt for
each POE threshold. The maximum score in each row has been bolded for each ensemble and approach.

.0% .10% .20% .30% .40% .50% .60% .70% .80% .90%

EqWt
Ens9Orig 0.221 0.221 0.29 0.321 0.363 0.39 0.409 0.417 0.412 0.409
Ens63 0.107 0.22 0.28 0.325 0.375 0.406 0.419 0.413 0.404 0.376

DistWt
Ens9Orig 0.221 0.262 0.301 0.331 0.363 0.385 0.389 0.408 0.406 0.413
Ens63 0.107 0.232 0.276 0.323 0.359 0.407 0.409 0.43 0.396 0.386
Ens9Sel 0.178 0.178 0.265 0.319 0.367 0.409 0.415 0.411 0.414 0.389

CorrDistWt
Ens9Orig 0.221 0.245 0.292 0.331 0.361 0.387 0.396 0.437 0.406 0.402
Ens63 0.107 0.222 0.289 0.337 0.375 0.421 0.416 0.416 0.407 0.386
Ens9Sel 0.178 0.178 0.272 0.328 0.359 0.39 0.399 0.431 0.403 0.405
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and/or Hashino et al. (2007) could be used to mitigate some
of these biases. Likewise, there are other techniques that have
been shown to work well in calibration of ensemble predic-
tions in postprocessing (Atger 2003; Gneiting et al. 2005;
Brown and Seo 2010).

d. Watershed drainage area analysis

Comparing metrics between the groupings of watersheds,
larger watersheds had higher ETS values at all POE thresh-
olds compared to smaller watersheds, with statistically sig-
nificant results for all three weighting approaches. The same
relationship was present for RPSQ for large basins, with the en-
sembles producing peak discharge forecasts that more closely

matched observations. RPSQ for large basins was 3.5%–7.5%
lower for all of the ensembles compared to the small basins. All
differences for RPSQ were statistically significant at a 90% con-
fidence interval. The evaluation of reliability produced similar
results as all four ensembles produced lower MADRel scores for
larger watersheds.

The ETS is higher in larger watersheds, with Ens9Orig hav-
ing only a slightly higher value compared to Ens63 for both
large and small watersheds (Table 5). The weighting schemes
improved ETS for small basins, but results were more mixed
for large watersheds. Results for Ens9Sel were also mixed.

Our results demonstrate that errors in QPF placement are
more detrimental to smaller watersheds. Shifted members
are more likely to “miss” a small watershed than a large

FIG. 6. As in Fig. 4, but with RPST.

TABLE 5. Evaluation metric values for small (,4000 km2) and large watersheds for all ensembles (Ens9Orig, Ens63, Ens9Sel) with
the three weighting schemes EqWt, DistWt, and CorrDistWt. The best score for each row and basin size category has been bolded.

Small watersheds Large watersheds

Ens9Orig Ens63 Ens9Sel Ens9Orig Ens63 Ens9Sel

EqWt
RPSQ 0.501 0.49 } 0.465 0.434 }

MADRel 0.255 0.177 } 0.241 0.107 }

ETS 0.279 0.236 } 0.457 0.454 }

RPST 3.759 3.675 } 4.941 4.739 }

DistWt
RPSQ 0.53 0.5 0.513 0.48 0.437 0.438
MADRel 0.25 0.189 0.261 0.224 0.178 0.177
ETS 0.288 0.242 0.255 0.451 0.46 0.457
RPST 3.707 3.724 3.645 4.84 4.782 4.61

CorrDistWt
RPSQ 0.517 0.501 0.516 0.479 0.433 0.444
MADRel 0.241 0.198 0.264 0.223 0.153 0.195
ETS 0.29 0.251 0.259 0.454 0.458 0.455
RPST 3.729 3.747 3.828 4.828 4.715 4.691
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watershed, resulting in more forecast error when events occur,
as many members may predict nonevents. The underdisper-
sion seen in the ranked histograms indicates that many of the
observations fall at the low end of the ensemble range, and the
ensembles are not capturing all possible outcomes. The higher
RPSQ in smaller basins is likely a result of the forecasts having
erroneously high probability for nonevents. These findings
support the works of Merz et al. (2009), van Esse et al. (2013),
Poncelet et al. (2017), and Madsen et al. (2020) in that larger
basins tend to score higher in skill metrics and have lower
errors.

In contrast to the forecasts of peak discharge, in the case
of peak discharge timing, RPST was lower for small basins
compared to large basins. However, the shifting methods
(with and without weighting) did improve the RPST values
compared to Ens9Orig for large watersheds but not small
watersheds. For small basins, Ens63 and Ens9Sel-DistWt
were the only instances where ensembles comprised of shifted
members produced better RPST scores than Ens9Orig. For
large basins, Ens9Sel-DistWt had the lowest RPST. The
shifting methods used in Ens63 and Ens9Sel did not im-
prove forecasts of timing in small watersheds possibly be-
cause the streamflow response is more directly a function of
the precipitation input. Errors in where the precipitation
falls are more likely to propagate to the forecast than in a
larger watershed where attenuation processes are more sig-
nificant and have more opportunity to smooth out or mask
errors in location.

When looking at the performance of the ensembles with
shifted QPF, there were increases in skill for large basins. The
variations in skill between watersheds may also be linked to the
morphology and orientation of the basins and the QPF. For
example, basins to the west of the Missouri–Mississippi divide
tend to have a northeast–southwest orientation, and those to
the east tend to have a northwest–southeast orientation. Basins
east of the Mississippi River tend to have a northeast–southwest
orientation. In general, roughly 50% of the time the QPF (or
observed) was aligned southwest–northeast or in scattered
cellular precipitation and moved from west to east. When
the orientation of the QPF region and the watershed are not
aligned, there is less opportunity for the watershed bound-
ary and QPF to overlap, regardless of shifting and/or dis-
placement. For large basins, there is a greater likelihood that
some of the QPF may be shifted into the watershed bound-
aries, whereas, for small basins, again, there is a greater chance
of the QPF falling outside the watershed boundaries due to
orientation differences.

4. Summary and conclusions

This research examined an ensemble streamflow forecasting
method where QPF was shifted in space randomly within a
range defined by the climatology of spatial displacement errors
in a precipitation ensemble. Our objective was to improve upon
prior work by combining the shifting method of Carlberg et al.
(2020) with QPF displacement information from Kiel et al.
(2022). Our results support findings by Carlberg et al. (2020)
that ensembles made up of shifted QPF members provide

improved probabilistic streamflow forecasts of flood potential
based on RPSQ, reliability, ETS, and minor improvements in
ranked histogram distribution, as compared to ensembles
without members driven by shifted QPF. However, for dichot-
omous forecasts of peak streamflow hitting action stage, there
were no statistically significant differences in the performance
of the ensembles with and without shifted QPF at several
POE thresholds.

Our ensemble member selection method (used to create
Ens9Sel) did not consistently improve upon the skill of
Ens9Orig and Ens63. Likewise, the member weighting schemes
tested also produced mixed results. DistWt showed some in-
creased skill over EqWt depending on the metric used, while
CorrDistWt produced marginally lower scores. The correction
used in CorrDistWt was meant to reduce the magnitude of dis-
placements present at CI, which are often larger than displace-
ments for the full 0–18-h accumulated precipitation. Although
the rain events used in this study had most of their precipita-
tion falling within the first 18 h of the forecast period, and thus
should match the 0–18-h climatological spatial displacements
found in Kiel et al. (2022) reasonably well, our QPFs included
the entire 36-h HRRRE forecast. The Kiel et al. (2022) adjust-
ments may be less relevant beyond forecast hour 18.

In the investigation into the influence of watershed area on
ensemble performance, it was found that forecasts for larger
watersheds were more skillful than for smaller basins for all
metrics except for RPST. Because the results were some-
what mixed, the role of the QPF shifting versus the role of
the hydrologic model for basins of varying size requires fur-
ther investigation. When the results were broken down by
small and large watersheds, the shifting methods improved
the prediction of peak timing for larger watersheds but did
not impact overall skill for peak timing.

This work adds additional support for developing an opera-
tional framework to address the uncertainty and error intro-
duced into streamflow predictions due to displacement errors
in QPF. Work on this topic could be expanded to include
other sources of ensemble forecast error such as precipitation
timing and/or intensity and hydrologic model error. Further
work in characterizing the HRRRE displacement errors be-
yond forecast hour 18 may provide additional information
that could improve the ensemble weighting used in DistWt
and CorrDistWt.

These methods have been applied broadly across water-
sheds of many scales in the north-central United States
with all of the cases lumped into a single dataset where
available. Some value may be found by examining the ef-
fectiveness of this shifting methodology for case studies or
individual watersheds while looking at the predictive abil-
ity of the ensembles in basins across hydrologic regimes.
As mentioned in the results, continued work on this topic
could examine the relationships between watershed shape
and orientation, QPF shape and orientation, and forecast
skill, which may lead to additional avenues for forecast
correction and generating guidance in real time. To better
understand the potential influences of model error versus
QPF error, specifically on short-range flood modeling, sensitiv-
ity testing on different models, and/or configurations of the
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same model should be undertaken while keeping QPF ensem-
bles consistent.
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